Aircraft Allocation
{ airsp.mpl }
{ GAMS Model Library, http://www.gams.com/modlib/libhtml/aircraft.htm }
{ Aircraft Allocation Under Uncertain Demand, Routing, Version1:- Size: 11 x 42, Version2:- Size: 56 x 72 }
#define Version1
!#define Version2
TITLE
aircraft;
INDEX
i := (a, b, c, d);
j := (route_1, route_2, route_3, route_4, route_5);
h := 1..5
hp := h;
DATA
Dd[j,h] := (
! 1 2 3 4 5
{route-1} 200, 220, 250, 270, 300,
{route-2} 50, 150, 0, 0, 0,
{route-3} 140, 160, 180, 200, 220,
{route-4} 10, 50, 80, 100, 340,
{route-5} 580, 600, 620, 0, 0);
Lambda[j,h] := (
! 1 2 3 4 5
{route-1} 0.2, 0.05, 0.35, 0.2, 0.2,
{route-2} 0.3, 0.7, 0, 0, 0,
{route-3} 0.1, 0.2, 0.4, 0.2, 0.1,
{route-4} 0.2, 0.2, 0.3, 0.2, 0.1,
{route-5} 0.1, 0.8, 0.1, 0, 0);
C[i,j] := (
! route-1 route-2 route-3 route-4 route-5
{a} 18, 21, 18, 16, 10,
{b} 0, 15, 16, 14, 9,
{c} 0, 10, 0, 9, 6,
{d} 17, 16, 17, 15, 10);
P[i,j] := (
! route-1 route-2 route-3 route-4 route-5
{a} 16, 15, 28, 23, 81,
{b} 0, 10, 14, 15, 57,
{c} 0, 5, 0, 7, 29,
{d} 9, 11, 22, 17, 55);
Aa[i] := (10, 19, 25, 15);
K[j] := (13, 13, 7, 7, 1);
Ed[j] := SUM(h: Lambda * Dd);
Gamma[j,h] := SUM(hp: Lambda[h:=hp] WHERE (hp >= h));
Deltb[j,h] := Dd WHERE (Dd > 0) - Dd[h-1] WHERE (Dd > 0);
VARIABLE
X[i,j];
Y[j,h];
B[j,h];
Oc;
Bc;
MODEL
MIN Phi = Oc + Bc;
SUBJECT TO
Ab[i]: SUM(j: X) <= Aa;
Ocd: Oc = SUM(i,j: C * X);
#ifdef Version1
Db[j]: SUM(i: P * X) >= SUM(h: Y WHERE (Deltb > 0));
Bcd1: Bc = SUM(j: K * (Ed - SUM(h: Gamma * Y)));
#endif
#ifdef Version2
Bd[j,h]: B = Dd - Y;
Yd[j,h]: Y <= SUM(i: P * X);
Bcd2: Bc = SUM(j,h: K * Lambda * B);
#endif
BOUNDS
#ifdef Version1
Y <= Deltb;
#endif
END
Back To Top
|
Maximal Home Page
|
List of Models |
Previous Page
|
Next Page