Breck and Dapper
{ Exmpl1-1_BreckAndDapper.mpl }
{ Roy D. Shapiro, Optimization Models for Planning and Allocation }
{ Chapter 1, Example 1, Product-Mix, Size: 5x6, Page 12 }
TITLE
BreckAndDapper;
INDEX
drill := 1..4;
DATA
PlastReq[drill] := (0.82, 0.62, 1.42, 2.03); !lb
CopperReq[drill] := (0.43, 0.69, 0.33, 0.20); !lb
WireReq[drill] := (15, 16, 9, 9); !yd
Contrib[drill] := (12.50, 11.30, 17.20, 19.90); !dollars
PlastAvail := 16000; !lb
CopperAvail := 5000; !lb
WireOnHand := 8000; !yd
ProdWireCap := 80000; !yd
ProdWireRate := 3.6/100; !lb/yd
WireProdCost := 0.14;
WirePurchaseCost := 0.29;
VARIABLES
Produce[drill] -> x;
WirePurchase -> Wp;
WireProduce -> Wm;
MODEL
MAX TotalProfit = SUM(drill: Contrib * Produce)
- WireProdCost * WireProduce
- WirePurchaseCost * WirePurchase;
SUBJECT TO
PlastLimit:
SUM(drill: PlastReq * Produce) <= PlastAvail;
CopperLimit:
SUM(drill: CopperReq * Produce)
+ ProdWireRate * WireProduce <= CopperAvail;
WireLimit:
SUM(drill: WireReq * Produce) <= WireOnHand + WireProduce + WirePurchase;
WireProdLimit:
WireProduce <= ProdWireCap;
Marketing:
Produce[1] + Produce[2] >= Produce[3] + Produce[4];
END
Back To Top
|
Maximal Home Page
|
List of Models |
Previous Page
|
Next Page