Haverly's pooling problem
{ Haverly.mpl }
{ GAMS Model Library, http://www.gams.com/modlib/libhtml/haverly.htm }
{ Haverly's pooling problem , Non Linear, Size: 9 x 12 }
TITLE
Haverly;
OPTIONS
Modeltype=Nonlinear
INDEX
s := (A,B,C);
f := (X,Y);
i := (Pool,CrudeC);
poolin[s] := (A,B);
DATA
CostPrice[s] := ( 6,16,10);
SulfurContent[s] := ( 3, 1, 2);
SellPrice[f] := ( 9,15);
ReqSulfur[f] := (2.5,1.5);
Demand[f] := (100,200);
VARIABLES
Cost;
Income;
Crude[s];
Final[f];
Stream[i,f];
Q;
MODEL
MAX Profit = Income - Cost;
SUBJECT TO
Costdef: SUM(s: CostPrice * Crude) = Cost;
Incomedef: SUM(f: SellPrice * Final) = Income;
Blend[f]: SUM(i: Stream) = Final;
PoolBal: SUM(s IN poolin: Crude) = SUM(f: Stream[i:=Pool]);
CrudeCBal: SUM(f: Stream[i:=CrudeC]) = Crude[s:=C];
PoolqualBal:
SUM(s IN poolin: SulfurContent * Crude)
=
Q * SUM(f: Stream[i:=Pool]);
BlendqualBal[f]:
Q * Stream[i:=Pool] + SulfurContent[s:=C] * Stream[i:=CrudeC]
<=
ReqSulfur * SUM(i: Stream);
BOUNDS
Final <= Demand;
END
Back To Top
|
Maximal Home Page
|
List of Models |
Previous Page
|
Next Page