Multicommodity Transportation
{ Exmpl20.2-1_MultiCommodity.mpl }
{ AMPL A Modeling Language for Mathematical Programming, 2nd Edition }
{ Chapter 20.2, Transportation, Size: 51x84, Page 442 }
TITLE
MultiCommodityInt;
INDEX
origin := (gary,clev,pitt);
dest := (fra,det,lan,win,stl,fre,laf)
prod := (bands,coils,plate);
DATA
Supply[prod,origin] := ( 400, 700, 800,
800,1600,1800,
200, 300, 300);
Demand[prod,dest] := (300,300,100, 75,650,225,250,
500,750,400,250,950,850,500,
100,100, 0, 50,200,100,250);
Cost[prod,origin,dest] := (30,10, 8,10,11,71, 6,
22, 7,10, 7,21,82,13,
19,11,12,10,25,83,15,
39,14,11,14,16,82, 8,
27, 9,12, 9,26,95,17,
24,14,17,13,28,99,20,
41,15,12,16,17,86, 8,
29, 9,13, 9,28,99,18,
26,14,17,13,31,104,20);
FCost[origin,dest] := 100 * (30,12,12,12,25,35,25,
20,10,15,12,25,30,22,
20,12,15,15,25,35,22);
Limit := 625;
VARIABLE
Trans[origin,dest,prod];
RUse[origin,dest];
MODEL
MIN TotalCost = SUM(origin,dest,prod: Cost * Trans) +
SUM(origin,dest: FCost * RUse);
SUBJECT TO
Supplying[origin,prod] -> SUP:
SUM(dest: Trans) = Supply;
Meetdemand[dest,prod] -> DEM:
SUM(origin: Trans) = Demand;
ShippinLimit[origin,dest] -> SLIM:
SUM(prod: Trans) <= Limit * RUse;
BINARY
RUse;
END
Back To Top
|
Maximal Home Page
|
List of Models |
Previous Page
|
Next Page