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Using Binary Indicator Variables in MPL 

When formulating mixed integer (MIP) models in MPL, binary (0/1) variables are often used to 

indicate whether certain constraints hold true or not or whether a variable is nonzero.  In this white 

paper, we will go over each of these cases and explain how to formulate indicator variables for 

them. 

Variable is nonzero (x > 0) 

The simplest case of using indicator variables is when a binary variable is used to represent 

whether a certain continuous variable is nonzero or not.  Let's assume we have a continuous 

variable x that can take any value between zero and ten (0 <= x <= 10).   

We can now define a binary indicator variable i such that 

x > 0  ->   i = 1 

x = 0  ->   i = 0 

where - is used to mean "implies".  To formulate the first condition we note that the constraint 

x <= 10 i; 

forces the binary variable i to take the value 1 if (x > 0) since the right-hand side must be greater 

than the left-hand side.  When (x = 0) the constraint becomes (0 <= 10 i) which still allows the i 

variable to be either 0 or 1. 

Now we will formulate the second condition.  Here we can enter the constraint 

x >= 0.0001 i 

This constraint will force the binary variable i to take the value 0 if (x < 0.0001).  We have to use 

small tolerance value such as 0.0001 in order to make sure i will be zero when (x = 0). The 

tolerance can be any number, small enough for us to treat x values that are below it as zero.  

To specify the general case for nonzero indicator variables let define x such that 

x = 0  or  eps <= x <= M  

Where eps is the zero tolerance value and M is the upper bound.  The constraints for this general 

case will then be as follows: 

x <= M * i;                                 [1] 

x >= eps * i;                               [2] 

In some cases you do not have to enter the second constraint.  For example if i is used in the 

objective function that is minimized it might already take the lowest possible value automatically. 
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Less Than constraints (ax <= b) 

Binary variables can also be used to indicate whether a certain constraint holds true.  Let's say we 

have a continuous variable x that has an upper bound of 5 and that there is a constraint that says 

(2x <= 5).  Further more we will assume the zero tolerance eps has the value of 0.0001.  The 

upper and lower bounds for the x variable can be represented as follows: 

x  >=  0; 

x  <=  5; 

The constraint (2x <= 5) can be rewritten as (2x - 5 <= 0).  We can now calculate the lower and 

upper bonds for the left-hand side of that formula as: 

m = 2 * 0 - 5 = -5 

and 

M = 2 * 5 - 5 = 5 

We now define a binary indicator variable i such that 

2x - 5 >= eps  ->  i = 0 

2x - 5 <= 0    ->  i = 1 

We are using the zero tolerance eps to allow us to write the condition as Greater Than Or Equal 

instead of just Greater Than. 

To formulate the conditions we use the formulas: 

ax - b  >=  eps + (m - eps)*i;              [3] 

ax - b  <=  M*(1 - i);                      [4] 

Entering the value for a, b, M, m, and eps we get the following two constraints: 

2x - 5  >=  0.0001 + (-5 - 0.0001)*i; 

2x - 5  <=  5*(1 - i); 

It easy to verify that these constraints are correct by entering the values for i=1 and i=0 for each 

of the constraint: 

i = 1:   2x - 5 >= -5;      which becomes  x >= 0; 

i = 1:   2x - 5 <= 0;       which becomes  x <= 2.5;   

 

i = 0:   2x - 5 >= 0.0001;  which becomes  x >= 2.50005 

i = 0:   2x - 5 <= 5;       which becomes  x <= 10; 

A quick look at these constraints shows that (i = 1) forces x to take a value between 0 and 2.5 for 

which the constraint (2x <= 5) holds and when (i = 0), x takes a value between 2.50005 and 10 

which does not fulfill the constraint. 
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Greater Than constraints (ax >= b) 

Binary indicator variables for greater-than constraints are implemented in a very similar fashion to 

less-than constraints.  Let's say we have the same continuous variable x as before with upper 

bound of 6, but now the constraint is (3x >= 6). 

The constraint (3x >= 6) can be rewritten as (3x - 6 >= 0).  We can now calculate the lower and 

upper bounds for the left-hand side of that formula as: 

m = 3 * 0 - 6 = -6 

and 

M = 3 * 6 - 6 = 12 

We now define a binary indicator variable i such that 

3x - 6 >= 0     ->  i = 1 

3x - 6 <= -eps  ->  i = 0 

As before we are using the zero tolerance eps to allow us to write the condition as Less Than or 

Equal instead of just Less Than. 

To formulate the conditions we use the formulas: 

ax - b  >=  m*(1 - i);                      [5] 

ax - b  <=  -eps + (M + eps)*i;             [6] 

Entering the value for a, b, M, m, and eps we get the following two constraints: 

3x - 6  >=  -6*(1 - i); 

3x - 6  <=  -0.0001 + (12 + 0.0001)*i; 

It is easy to verify that these constraints are correct by entering the values for i=1 and i=0 for 

each of the constraint: 

i = 1:   3x - 6 >= 0;        which becomes  x >= 2.0;   

i = 1:   3x - 6 <= 12;       which becomes  x <= 6; 

 

i = 0:   3x - 6 >= -6;       which becomes  x >= 0; 

i = 0:   3x - 6 <= -0.0001;  which becomes  x <= 1.99997 

A quick look at these constraints shows that (i = 1) forces x to take a value between 2.0 and 6.0 

for which the constraint (3x >= 6) holds and when (i = 0), x takes a value between 0 and 1.99997 

which does not fulfill the constraint. 

Equal constraints (ax = b) 

Equal constraints are done in similar fashion as both Less Than and Greater Than constraints, but 

you have to include two separate constraints for each case and define three different indicator 

variables.   

When (i = 1) both the greater than and the less than constraints are needed in order to force the 

(ax = b) to be true. 
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Enforce the equal constraint (ax = b): 

ax - b  >=  m*(1 - i);                      [7] 

ax - b  <=  M*(1 - i);                      [8] 

When (i = 0), either the less than constraint (ax < b) or the greater than constraint (ax > b) must 

be true.  Therefore we need to create two more binary variables i1 and i2 to represent each: 

Enforce the less than constraint (ax < b) => (ax <= b - eps): 

ax - b  <=  M - (M + eps)*i1;               [9] 

Enforce the greater than constraint (ax > b) => (ax >= b + eps): 

ax - b  >=  m - (m - eps)*i2;              [10] 

You can now force at least one of i1 or i2 to be one when (i = 0) by entering the following 

constraint: 

i1 + i2 >= 1 - i;                           [11] 

Summary of Formulas 

Here is a summary of all the formulas we defined above: 

Variable is nonzero (x >= 0): 

x <= M * i;                                 [1] 

x >= eps * i;                               [2] 

Less Than constraints (ax <= b): 

ax - b  >=  eps + (m - eps)*i;              [3] 

ax - b  <=  M*(1 - i);                      [4] 

Greater Than constraints (ax >= b): 

ax - b  >=  m*(1 - i);                      [5] 

ax - b  <=  -eps + (M + eps)*i;             [6] 

Equal constraints (ax = b): 

ax - b  >=  m*(1 - i);                      [7] 

ax - b  <=  M*(1 - i);                      [8] 

ax - b  <=  M - (M + eps)*i1;               [9] 

ax - b  >=  m - (m - eps)*i2;              [10] 

i1 + i2 >= 1 - i;                          [11] 

These also work (ax = b): 

ax - b  >=  m*(1 - i);                      [7] 

ax - b  <=  M*(1 - i);                      [8] 

ax - b  <=  -eps + (M + eps)*i1;            [9] 

ax - b  >=  eps + (m - eps)*i2;            [10] 

i1 + i2 <= 1 + i;                          [11] 



Maximal, MPL, and OptiMax 2000 are trademarks of Maximal Software, Inc.  The names of other products are registered trademarks of their respective holders. 

Boolean Conditions 

After you have defined binary indicator variables for your constraints, you can use them to create 

all kinds of boolean conditions in your models.  Here are few examples with the corresponding 

equations on the binary variables: 

not P1                         i1 = 0 

P1 or P2                       i1 + i2 >= 1 

P1 xor P2                      i1 + i2 = 1 

P1 and P2                      i1 = 1,  i2 = 1 

 

NOT (P1 or P2)                 i1 = 0,  i2 = 0 

NOT (P1 and P2)                i1 + i2 <= 1 

 

P1 -> NOT P2                   i1 + i2 <= 1 

P1 -> P2                       i1 <= i2 

P1 <-> P2                      i1 = i2 

 

P1 -> (P2 and P3)              i1 <= i2,  i1 <= i3 

P1 -> (P2 or P3)               i1 <= i2 + i3 

(P1 and P2) -> p               i1 + i2 <= 2 - 1 + i 

(P1 and P2 and P3) -> p        i1 + i2 + i3 <= 3 - 1 + i 

 

(P1 or P2) -> p                i1 <= i,  i2 <= i 

 

P1 and (P2 or P3)              i1 = 1,  i2 + i3 >= 1 

P1 or (P2 and P3)              i1 + i2 >= 1,  i1 + i3 >= 1 

 

P1 or P2 or P3                 i1 + i2 + i3 >= 1 

P1 xor P2 xor P3               i1 + i2 + i3 = 1 

 

ATLEAST[k]                     i1 + i2 + i3 >= k 

EXACTLY[k]                     i1 + i2 + i3 = k 

ATMOST[k]                      i1 + i2 + i3 <= k 

 

p <-> P1 or P2 or P3           i1 + i2 + i3 >= i,   

                               i >= i1,  i >= i2,  i >= i3 

p <-> P1 and P2 and P3         i1 + i2 + i3 <= 3 - 1 + i,   

                               i <= i1,  i <= i2,  i <= i3 

 


